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Scientific context. Mixed-integer optimization (MIO), which combines continuous and discrete variables, is
a key area in operations research and artificial intelligence. It is used in complex problems where the variables
to be optimized are not only continuous, such as weights or proportions, but also discrete, such as binary choices
or integer assignments.

This type of optimisation is fundamental to a wide range of applications, such as planning and scheduling
(production management, logistics), design of complex systems (engineering, communication networks, bioin-
formatics), energy optimisation (smart grids, resource allocation), machine learning (setting hyperparameters
in hybrid models). For instance in production, a factory producing several types of product has to decide how
much of each product to make to maximise its profit, while respecting the production capacity and market
demand constraints. In this case, the quantities of products produced could be considered as continuous vari-
ables and decisions to switch certain machines on or off could be integer variables. More formally, the goal is to
minimize (or maximize) a function f defined on d discrete and c continuous variables (d, c > 0). Furthermore,
in most real-world applications, the function f is not defined analytically and is often the result of numerical
simulations, which makes it impossible to use the derivative. As a consequence, free-derivative methods as
metaheuristics or Artificial Evolution (AE) (Del Ser et al. 2019) may be used (Ploskas and Sahinidis 2022).
AE are nature-inspired and stochastic algorithms that mimic Darwin’s theory for problem optimisation1 by
evolving a set of candidate solutions in silicio using selection, mutation, crossover and reproduction operators.

According to (Talbi 2024), MIO techniques can be divided into two different approaches: global or decom-
position-based. In the global approach, the optimisation process is performed on the entire mixed variable space
by considering the discrete variables as continuous variables, or discretising continuous variables. In the oppo-
site, the decomposition-based approach involves optimising separately the continuous variables from the discrete
ones. In this case, a collaboration strategy gives good performances. It decomposed the initial problem into sev-
eral sub-problems, each of which is solved in a separate process to generate partial optimal solutions. All search
processes collaborate together to construct complete solutions to the initial problem. Most of techniques in the
literature studied by (Talbi 2024) mainly considers population-based metaheuristics for optimising both con-
tinuous and discrete variables. Some hybrid approaches combining global and decomposition-based approaches
are mentioned, but most are based on a single AE technique such as DE, PSO or ACO... In most cases, the
algorithm, initially dedicated to continuous optimisation is then adapted to deal with discrete variables.

Research questions. In this work, we believe that machine learning, and more specifically reinforcement
learning (RL) with the Monte Carlo Tree Search (MCTS) algorithm (Świechowski et al. 2023; Browne et al.
2012), should give better results as it is well suited to combinatorial optimisation. It has been combined
with deep learning (DL) to beat the world champion at Go (Silver et al. 2016). MCTS uses a policy to
balance exploration and exploitation when selecting the most interesting state in the search space. (Sabharwal
et al. 2012) initiated this approach by combining the upper confidence bound for trees (UCT) with CPLEX
solvers. The basic idea is to hybridise MCTS with AE, since MCTS has proven its superiority for combinatorial
optimisation and AE for continuous optimisation. In addition, both techniques have been adapted for the
other type of optimisation. So which combination is better for MIO? As we have recently improved the MCTS
algorithm in continuous space (Michelucci et al. 2024), we wonder which AE technique should be replaced by
the MCTS approach ? It may also be possible to consider MCTS for both discrete and continuous optimisation,
and as far as we know this has not been investigated.

Methodology and Work Plan. This PhD proposal is ambitious because it mixes two different subfields
of computer science such as stochastic optimisation with artificial evolution and reinforcement learning with
MCTS. The PhD work could be divided into the following phases:

1https://youtu.be/_Hj9fxMxBX0.
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1. starting by developing an AE technique applied to MIO and comparing the results for the different
approaches (global and decomposition-based) on benchmark functions;

2. based on the MCTS4R software library developed at the I3S laboratory for educational purposes, perform
the same experimental protocol as in the previous step using the MCTS technique. Is it better to use the
global approach with MCTS or the collaboration approach by combining vanilla MCTS with continuous
MCTS? We have already developed a continuous version of MCTS in a bioinformatics context (Michelucci
et al. 2024), but it should be generalised for other domains. Then, what about a nested approach to
MCTS, considering both discrete and continuous variables in the same tree and using a different policy
depending on the nature of the variable;

3. According to the results obtained in the previous steps, we will investigate different hybridisation strategies
between AE and MCTS techniques for MIO. As presented above, we could envisage a collaboration between
two sub-processes, one for discrete variables optimised with MCTS and another for continuous variables
optimised with the AE technique. One could also envisage exploring the discrete variable space using
MCTS by considering the transition between states as fixing a value for the selected discrete variable. A
simulation would only be possible if all discrete variables were involved. The simulation would consist of
optimising the continuous variables using an AE technique within a given budget.

Application domain. We first expect to test and compare our approaches on benchmark functions (Tušar
et al. 2019) or from the library of mixed-integer and continuous nonlinear programming instances2. We then
expect to validate our proposed algorithms to the field of bioinformatics and in particular to the modelling of
Gene Regulatory Networks (GRNs). A regulatory network, modelled as a graph, defines the static interactions
of a biological system. Each interaction abstracts the individual influence of a gene x on the expression of
another gene y. The dynamics of the network are governed by a large number of discrete and continuous
unknown parameters, which we aim to identify (Grataloup et al. 2024).
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