
 __
 A Genetic Algorithm from scratch in Python 1 / 5

A Genetic Algorithm from scratch in Python

Syllabus
Goal of this lab is to create a genetic algorithm from scratch using Python language. Discrete (OneMax benchmark)
and continuous (Ackley) optimizations are tackled.

Exercice 1 Configuring Python

1. Install python language on your computer (https://www.python.org/downloads/). You could also use alternatives
packages as WinPython (http://winpython.github.io).

2. Make sure that pip command is available. Test with pip –-version. If not, do not forget to add Python path to
your OS.

3. I recommend using any IDE (Integrated Development Environment) dedicated to Python as PyCharm, Spyder or
whatever similar.

Exercice 2 GA from Scratch

The different steps of an EA are represented below:

1. Create a new project in your favorite IDE (I suppose it is PyCharm) and create a new python file called
BasicGA.py. The first thing we need is a pseudo-random number generator (prng). Then, in the main program,
we affect its seed in order to be reproducible. We define a population size to 10 and consider that each individual in
the population is encoded by 20 genes (bits). We then call method geneticAlgorithm that populate the
population randomly and print all individuals. Execute your program several times. What can you observe? Now,
change the seed with prng.randint(0,10000). What is the effect?

2. Remove printing the population and change the seed to 0. The initialization phase is done!
3. Now, we have to define the evaluation function of one individual. Usually, one of the simplest problem is to

maximize the number of ‘1’ contained in an individual. This is a benchmark function called MAX_ONES. Of
course, we already know that the optimum value for this optimization problem equals the size of an individual. It is
just a way to observe that the evolution process converges to the real optima and one way to prove that it works.
We simply implement it as the sum of all genes contained in the individual. Remark that we give the type of each

import random as prng

def geneticAlgorithm(popsize:int, indsize:int):
 population = [[prng.randint(0, 1) for _ in range(indsize)] for _ in range(popsize)]
 for ind in population:
 print(ind)

if __name__ == '__main__':
 prng.seed(0)
 popsize = 10
 indsize = 20
 geneticAlgorithm(popsize=popsize, indsize=indsize)

http://creativecommons.org/licenses/by-nc-sa/4.0/
https://www.python.org/downloads/
http://winpython.github.io/

Université Côte d’Azur L3 IA − Bio-Inspired Computation Denis PALLEZ
 __

 __
 A Genetic Algorithm from scratch in Python 2 / 5

parameter in input and output in python:

4. Then, the new function is given as an argument to the genetic algorithm and we save fitness value of all individuals

in a list:

5. For selecting individuals considered as genitors, the most used mechanism is tournament selection. This selection

needs the result of evaluations and the size T of the tournament. The principle is to select randomly T individuals
in the population and keep the best among them as one parent. We define a default value of 2 for the tournament
size. Iterate again for having another parent.

6. Once parents are selected, they are crossed for obtaining offspring. For this mechanism, we use one point

crossover.

7. After crossover, mutation is applied according to a certain probability. In the case of string of bits, bits are simply

flipped. Using assertion, we check whether given probability is in [0,1].

8. We just define all operators for creating a new population. Now, we have to compute offspring from current

population and their corresponding fitness.

9. At that point, we should have parents and offspring with corresponding fitness. We started with a population of

size 10 and we created 10 offspring, so we have 20 individuals. In order to have a constant population size, the
simplest mechanism will replace all parents by offspring. However, imagine that one parent has the best fitness
among the parents and the children. By doing so, you may loose the best individual found so far. That is why elitism
is often introduced in evolutionary computation. Some best individuals from parents are kept for next generation.

'''create offspring with same size as parent'''
def offspring(parent:list[list[int]],fitness:list[float])->list[list[int]]:
 offspring=[] #create an empty list of offspring
 popsize=len(fitness)
 while len(offspring)<popsize:
 ind1 = tournamentSelection(fitness)
 ind2 = tournamentSelection (fitness)
 off = onePointXOver(parent[ind1], parent[ind2])
 for ind in off:
 ind=bitflipMutation(ind)
 offspring.extend(off)
 return offspring[:len(parent)] #when popsize is odd

'''Bit-flip mutation'''
def bitflipMutation(parent:list[int], probability:float=0.05)->list[int]:
 assert probability>=0.0 and probability<=1.0 ,"Probability of mutation should be in [0,1]."
 for indexGene in range(len(parent)):
 if prng.random()<=probability:
 parent[indexGene] = 1 - parent[indexGene]
 return parent

''' One-point XOver on two individuals'''
def onePointXOver(parent1:list[int], parent2:list[int])-> list[list[int]]:
 child1, child2 = parent1.copy(), parent2.copy()
 min_length = min(len(parent1),len(parent2)) #if parents have not same length
 pointcut = prng.randint(1,min_length-1) # to be sure to be inside the genome
 child1[pointcut:] = parent2[pointcut:]
 child2[pointcut:] = parent1[pointcut:]
 return [child1,child2]

''' Select one individual using
 Tournament selection of size size
 Return index of selected individual'''
def tournamentSelection(fitness:list[float], size:int=2)->int:
 selected_index = prng.sample(range(len(fitness)), size)
 best_index = np.argmax([fitness[i] for i in selected_index])
 return selected_index[best_index]

def geneticAlgorithm(evaluate,popsize:int, indsize:int):
 ...
 fitness = [evaluate(ind) for ind in population]

if __name__ == '__main__':
 ...
 geneticAlgorithm(evaluate=maxOnes, popsize=popsize, indsize=indsize)

'''Maximize the number of one in the individual'''
def maxOnes(individual:list[int]) -> float:
 return sum(individual)

http://univ-cotedazur.fr/en
http://www-sop.inria.fr/members/Michel.Syska/l3ia/
https://lms.univ-cotedazur.fr/course/view.php?id=11030
http://denispallez.i3s.unice.fr/
http://creativecommons.org/licenses/by-nc-sa/4.0/

Université Côte d’Azur L3 IA − Bio-Inspired Computation Denis PALLEZ
 __

 __
 A Genetic Algorithm from scratch in Python 3 / 5

Here, we add a new parameter that corresponds to the number of best parents kept.

10. In order to implement the generational loop, one of the best practice is to consider how many calls have been done

to function evaluate. This is called Number of Function Evaluations (NFE). We also need the maximum of NFE
(MAX_NFE) to know when the algorithm will stop. A good value for MAX_NFE could be 10 times the size of one
individual. Do not forget to increment NFE when evaluating individuals. Finally, the algorithm could return the
best individual with its fitness:

11. Execute your algorithm; it should work. Now, change the value of MAX_NFE to 5*indsize. What can you

observe? Explain!
12. The main disadvantage of this program is that we obtain a result without knowing what happens during the

execution. We would like to do something (printing, plotting, saving …) during the run. To do so, we add a list
parameter observers to the genetic algorithm and call all methods included in this list in the generational loop:

13. Now, we have to define what to do; for instance, printing the best individual of the population. Execute.

''' print to console best individual of population during the run'''
def printBestIndividual(population:list[int], fitness:list[float], NFE:int):
 best_index = np.argmax(fitness)
 print(NFE, population[best_index], fitness[best_index])

if __name__ == '__main__':
 ...
 bestInd,bestFit = geneticAlgorithm(evaluator=maxOnes, popsize=popsize, indsize=indsize,
 MAX_NFE=10*indsize, observers=[printBestIndividual])

def geneticAlgorithm(evaluator,popsize:int, indsize:int, MAX_NFE:int, observers=[])->(list[int],
float):
 ...
 # generationnal loop
 while NFE < MAX_NFE:
 for obs in observers:
 obs(population,fitness,NFE)
 ...

def geneticAlgorithm(evaluator,popsize:int, indsize:int, MAX_NFE:int)->(list[int],float):
 NFE = 0
 population = [[prng.randint(0, 1) for _ in range(indsize)] for _ in range(popsize)]
 fitness = [evaluator(ind) for ind in population]
 NFE += len(fitness)
 # generationnal loop
 while NFE < MAX_NFE:
 off = offspring(population, fitness)
 fitnessOff = [evaluator(ind) for ind in off]
 NFE += len(fitnessOff)
 population, fitness = replacement(population, fitness, off, fitnessOff)

 best_index = np.argmax(fitness)
 return population[best_index], fitness[best_index]

if __name__ == '__main__':
 ...
 bestInd,bestFit = geneticAlgorithm(evaluator=maxOnes, popsize=popsize, indsize=indsize,
 MAX_NFE=10*indsize)
 print(bestInd,bestFit)

'''Define individuals of next generation based on parents & offspring.
Elitism is the number of best individuals from parents kept for next generation'''
def replacement(parent:list[list[int]],fitness:list[float],
 offspring:list[list[int]],fitnessOff:list[float],elitism:int=1):
 newpop = [] # next generation
 newfit = [] # and corresponding fitness
 popsize = len(parent) # and corresponding fitness
 while elitism>0:
 best_index = np.argmax(fitness) # find best individual in parents
 newpop.append(parent.pop(best_index)) # remove best_index from parent and add to newpop
 newfit.append(fitness.pop(best_index)) # same for fitness
 elitism -= 1
 newpop.extend(offspring[:popsize -len(newpop)])
 newfit.extend(fitnessOff[:popsize - len(newfit)])
 return newpop, newfit

http://univ-cotedazur.fr/en
http://www-sop.inria.fr/members/Michel.Syska/l3ia/
https://lms.univ-cotedazur.fr/course/view.php?id=11030
http://denispallez.i3s.unice.fr/
http://creativecommons.org/licenses/by-nc-sa/4.0/

Université Côte d’Azur L3 IA − Bio-Inspired Computation Denis PALLEZ
 __

 __
 A Genetic Algorithm from scratch in Python 4 / 5

14. And, at the same time, save some statistics on the population in a file? Execute and open csv file with Excel.

15. Modify all previous code for changing the mutation probability and the tournament size when calling

geneticAlgorithm method and add a probability of crossover. You might group all parameters in only one
dictionary parameter containing all previous ones.

Exercice 3 Continuous optimization

Optimizing ones in a string of bits is not very interesting. A clever task could be to find the minimum value of Ackley1

function 𝑓𝑓(𝑥𝑥,𝑦𝑦) = −20e−0.2�0.5(𝑥𝑥2+𝑦𝑦2) − e0.5(cos(2πx+cos(2πy))) + 𝑒𝑒 + 20 for x and y in [-5, 5] which equals (0, 0).

1. As we want to reuse what has been previously done, we will consider that one individual, a string of bits, represents
x and y in this case. We previously defined a problem with 20 bits, and, for this new problem, we have to optimize
two variables x and y: so, we simply consider that each variable is encoded by 10 bits in the genotype. The first
thing to do is to define a new evaluation function called Ackley with the same prototype as maxOnes function
defined previously and consider it for optimization:

2. As opposed to previously, Ackley function needs reals and not bits; that is why the string of bits is converted using

decode_float_values method which needs number of variables (2), the bounds of each variable ([-5, 5]) and

1 https://en.wikipedia.org/wiki/Test_functions_for_optimization

from math import *

'''Akcley function'''
def Ackley(individual:list[int]) -> float:
 a = 20
 b = 0.2
 c = 2*pi
 number_variables = 2
 bounds = [[-5.0, 5.0], [-5.0, 5.0]]
 values= decode_float_values(bounds, number_variables, individual)
 f = -a * exp(-b * sqrt(1.0/number_variables) * sum([xi**2 for xi in values])) \
 - exp (1.0/number_variables * sum([cos(c*xi) for xi in values])) + a + e
 return f

if __name__ == '__main__':
 ...
 bestInd,bestFit = geneticAlgorithm(evaluator=Ackley, popsize=popsize, indsize=indsize,
 MAX_NFE=10*indsize,
 observers=[printBestIndividual, saveStatistics])
 print(bestInd, bestFit)

''' save statistics of current population to a file during run'''
def saveStatistics(population: list[int], fitness: list[float], NFE: int):
 fileName='./statistics.csv'
 if NFE==len(fitness):
 file = open(fileName, 'w')
 file.write('NFE \t avg \t min \t max \t std')
 else:
 file = open(fileName, 'a')
 file.write("\n{0}\t{1}\t{2}\t{3}\t{4}".format(NFE, np.average(fitness), np.min(fitness),
 np.max(fitness), np.std(fitness)))
 file.close()

if __name__ == '__main__':
 ...
 bestInd,bestFit = geneticAlgorithm(evaluator=maxOnes, popsize=popsize, indsize=indsize,
 MAX_NFE=10*indsize,
 observers=[printBestIndividual, saveStatistics])

http://univ-cotedazur.fr/en
http://www-sop.inria.fr/members/Michel.Syska/l3ia/
https://lms.univ-cotedazur.fr/course/view.php?id=11030
http://denispallez.i3s.unice.fr/
http://creativecommons.org/licenses/by-nc-sa/4.0/
https://en.wikipedia.org/wiki/Test_functions_for_optimization

Université Côte d’Azur L3 IA − Bio-Inspired Computation Denis PALLEZ
 __

 __
 A Genetic Algorithm from scratch in Python 5 / 5

the string to decode:

3. Now, you can execute. What are the results? Is it correct? Explain Why! What do we need to change?
4. Increase NFE and look at the results. Can you obtain optimal value? If not, what do you propose to change?

Sources
• Simple genetic algorithm from scratch in Python, https://machinelearningmastery.com/simple-genetic-

algorithm-from-scratch-in-python/, Juillet 2021.

'''Decode a string of bits (genotype) as a list of number_variables float values.
Bounds for each variable is stored in bounds.'''
def decode_float_values(bounds:list[list[float]], number_variables:int, genome:list[list[int]])-
>list[float]:
 decoded = list()
 n_bits= len(genome)//number_variables
 largest = 2 ** n_bits
 for i in range(len(bounds)):
 # extract the substring
 start, end = i * n_bits, (i * n_bits) + n_bits
 substring = genome[start:end]
 # convert bitstring to a string of chars
 chars = ''.join([str(s) for s in substring])
 # convert string to integer
 integer = int(chars, 2)
 # scale integer to desired range
 value = bounds[i][0] + (integer / largest) * (bounds[i][1] - bounds[i][0])
 # store
 decoded.append(value)
 return decoded

http://univ-cotedazur.fr/en
http://www-sop.inria.fr/members/Michel.Syska/l3ia/
https://lms.univ-cotedazur.fr/course/view.php?id=11030
http://denispallez.i3s.unice.fr/
http://creativecommons.org/licenses/by-nc-sa/4.0/
https://machinelearningmastery.com/simple-genetic-algorithm-from-scratch-in-python/
https://machinelearningmastery.com/simple-genetic-algorithm-from-scratch-in-python/

	Syllabus
	Sources

